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In this paper best quadrature formulas in the sense of Sard with fixed
knots corresponding to splines satisfying boundary conditions are charac
terized. The motivation and inspiration stem from the work of Schoenberg
[11-13], which we generalize and refine. Apart from their independent
interest, these extensions are essential for our efforts in determining "optimal"
quadrature formulas. ("Optimal", as distinguished from "best," allows the
knots, in addition to the coefficients of the quadrature expression, to be
regarded as free variables.)

The usual expression of a quadrature formula for a linear functional
L(f) defined for continuous functions on [0, 1] with preassigned knots
{g/c}I, 0 < gl < ... < gr < 1, is

r

Q(f) = L cd(g/c)·
/c~1

Each specification of{c/c} provides a quadrature formula. The linear functional

R(f) = L(f) - Q(f)

is called the remainder functional. A quadrature formula Q*(f) with remain
der R*(f) is said to be best in the sense of Sard, if {c/c*} corresponding to
Q*(f) is determined in such a manner that

and

R*(f) = 0 when f is a polynomial of degree ~n - 11

inf sup I R(f)j = sup I R*(f)I,
{Ck} leCn[o.l] 11/11n';;;l

1I/11n ';;;l

(0.1)

(0.2)

* Research supported in part under contract NOOI4-67-A-0112-0015 at Stanford
University, Stanford, California.

1 With a proper formulation (see Section 7) we will see that (0.1) is mostly superfluous
for the objective of (0.2).
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where Ilfll~ = I~ 1/(n)(x)1 2 dx, and the quadrature formulas competing
under the infinum sign are those satisfying (0.1).

We concentrate principally on determining the quadrature formula best
in the sense of Sard for the special functional L(f) = I~/(x) dx. Some
extensions are dealt with in Section 6.

In dealing with these problems and their extensions to encompass the case
of free knots it is useful and of independent interest to broaden the concept
of quadrature formulas to include boundary terms. Specifically, we will
consider quadrature formulas for L(f), involving specific derivatives off at
the boundary points, of the type

r n-:p n-(l

Q(f) = I Cd(~k) + L A,J(il"'>cO) + I Bv/(i;)(l), (0.3)
k=1 ,,=1 v=1

where {ilL'} and U.'} are prescribed and

More generally, we will be concerned with quadrature formulas of the
type

r n n

Q(f) = I Cd(~k) + I AiGi(f) + I BJJi/), (0.4)
k=1 i=p+1 i=q+1

where Ck, Ai and Bi are free real constants and G", "V1' are special linear
forms, viz.,

n-1

G,,(f) = I .11"8/(8)(0),
8=0

n-l

"Vi/) = L By8j<8)(l),
8=0

ex = p + 1,..., n,

'Y = q + 1,... , n.

(0.5)

In other words, the quadrature part involves point evaluations of f at ~k

and certain linear combinations of the derivatives off (up to order m - 1)
at 0 and 1.

The formulation and solution of the problem of ascertaining the best
quadrature formulas of the types (0.3) or (0.4) is elaborated in Sections 2
and 3, respectively. Some important examples of (0.5) are highlighted in
Section 4.

Section 5 treats a case of quadrature formulas related to periodic boundary
conditions. In Section 6, we indicate a series of extensions of the preceding
results including the modifications needed for securing the best quadrature
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formulas for linear functiona1s of the from L(f) = f~f(x) w(x) dx, where
w(x) is a continuous positive weight function.

A general perspective on and a framework for securing the best and
optimal quadrature formulas is set forth in Section 7. Here, connections
to problems of best approximation in the complex domain are noted. Also,
relevance of these ideas to statistical estimation of time series is discussed
briefly.

1. QUADRATURE FORMULAS AND MONOSPLINES

Schoenberg [11] pointed out an enticing correspondence between qua
drature formulas and monosp1ines. A monospline of degree m with knots
{gkK is an expression of the form

(Ll)

where bv and dk are real. We designate this class of monosplines by .,Hm,.({gJD
and, where no ambiguity will arise, the display of the given knots {gvK will
be suppressed. When the term xmjm! is discarded in (Ll) we refer to the
resultant function as a spline of degree m - 1 with knots {gvK . The linear
space of these functions is denoted by 9'm,.({gJD = 9'm.•.

We review Schoenberg's reasoning. Let f be of continuity class c<nJ,
on [0,1]. Integrating by parts, n - 1 times yields

s: M(x)f(nJ(x) dx

n-2 1

= L (-l)i pn-H)(X) M(iJ(X) I~ + (_l)n-l f M(n-l)(x)!'(X) dx.
i=O 0 (1.2)

Set go = 0, g.+l = 1. Then
2J

M<n-1J(X) = x + (n - 1)! bn-1 + L (n - 1)! dk
k~l

p = 0, 1,... , r.

Substitution for M(n-l)(x) in (1.2) and another integration by parts of
1fo xf'(x) dx finally produce the formula

1 n-l n-lf f(x) dx = L BJ!(i)(1) + L AJ!(il(O)
o j~O j-O

• 1+ L cJ(g.) + (_l)n f M(x) f(n)(x) dx, (1.3)
v~l 0
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where

and
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Bj = (-I)j MCn-i-l )(1),

Ai = (_1)1+1 MCn-i-l )(O),
j = 0, 1, ... , n - 1, (1.4)

Set

v = 1,2,..., r.

and

n-l n-l r

Q(f) = L Bd Cj)(1) + L AdCi)(O) + L cJ(gv) (1.5)
i~O j~O v~1

R(f) = (_l)n { M(x) fCn>(x) dx. (1.5')

Inspection of (1.3) reveals the equality Q(f) = I~f(x) dx holding whenver f
is a polynomial of degree at most n - 1.

Note that, if M(x) is replaced by a spline S(x) of degree n - 1 with knots
{gvK, then the term I~f(x) dx does not arise and (1.3) reduces to

Q(f) + (_l)n {S(x)pn)(x)dx = 0. (1.6)

Of course, the evaluations of (1.4) are then construed with S(x) inserted
for M(x).

The foregoing analysis demonstrated that every monospline of degree n
induces a quadrature formula of the form (1.3), satisfying R(f) = °for f
a polynomial of degree at most n - 1.

The converse is valid. Specifically, let Q(f) be a quadrature formula of the
type (1.5) with the property that

L(f) = J>(X) dx = Q(f) (1.7)

for f a polynomial of degree ~n - 1. We will establish the existence of a
monospline M(x) of degree n with knots {gJ~ such that R(f) = L(f) - Q(f)
admits the representation given in (1.5').

Let f be of continuity class CCn)[o, 1]. Taylor's formula with remainder
applies to give

f(x) = 'f fCi)(O) ~,i + 1 ,Jl
fCn)(t)(x - t)~-1 dt.

i~O I. (n - 1). 0
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Since R(f) = L(f) - Q(f) is a continuous linear functional annihilating
polynomials of degree ~n - 1, we obtain

R(f) = (n ~ I)! f>(n)(t) Rx(x - t)~-I dt.

Observe for R(f) = f~ f(x) dx - Q(f) that

(-I)n ( )n-I (_l)n [fl( )n-Id Q( )n-I]
(n _ I)! Rx x - t + = (n _ I)! 0 x - t + x - x X - t +

(1.8)

and the right side is manifestly a monospline M(t) of degree n of the desired
kind. The above discussion can be summarized as follows:

THEOREM 1.1. Every quadratureformula oftheform (1.5)for the functional
L(f) = f~f(x) dx which satisfies (1.7) has a remainder functional

R(f) = (_l)n (pnJ(x) M(x) dx (1.9)

for some monospline M(x) ofdegree n. Conversely, every monospline ofdegree n
induces a quadrature formula of the type (1.5) and the identity (1.3) prevails.
The coefficients of the quadrature formula are computed according to the
relations (1.4). The correspondence between monosplines and quadrature
formulas is 1 : 1 as is evident from the representation (1.9).

As we stated earlier, Theorem 1.1 is due to Schoenberg [13].
Specialized quadrature formulas of the types (0.5) and (0.4) emanate by

requiring that the monospline obey certain boundary conditions. Some
examples are considered in Sections 2 and 3.

Now, the objective of our endeavors is to characterize quadrature formulas
(or, equivalently, corresponding monosplines) best in the sense of Sard
(cf. (0.1) and (0.2)). To this end, observe first that application of the Schwartz
inequality (together with the condition for equality) in (1.9) furnishes the
relation

sup I R(f)1 2 = fl I M(x)1 2 dx,
IIflln~1 0

(1.10)
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where IIflin is as defined following (0.2). Therefore, the determination of the
best quadrature formula obviously reduces to evaluating

1 1

min f I M(x)1 2 dx = f I M *(x)1 2 dx
Ms.Hn•• 0 0

(LlI)

and characterizing M *(x), where the minimum is extended over all mono
splines satisfying the appropriate boundary conditions with the given knots.
Theorem 1.1 assures that this class is nonvoid provided only that a quadrature
formula is available for which (1.7) is satisfied. This requirement entails in
some cases assumptions concerning prescription of the number of knots and
the nature of the boundary conditions.

To solve the minimum problem (LlI) is obviously the same as finding the
best approximation to the function xnjn! in V(O, 1) by splines in S"'n.r
restricted by certain linear constraints induced by the boundary conditions.
The corresponding set of monosplines of degree n with fixed knots {tvK
comprises a convex set in the Hilbert space V(O, 1). Since V(O, 1) is strictly
convex the minimizing monospline M is uniquely determined.

Let Sex) be any spline of degree n - I with knots {tkK satisfying the
relevant boundary conditions. If M(x) is a monospline of degree n with the
required properties, then M(x) + Sex) is a monospline of the same class.
The standard Hilbert space variational argument shows that Mix) solves
the minimization problem if and only if

£: M*(x) Sex) dx = ° (Ll2)

for all splines Sex) of degree n - I with knots {tkK satisfying the appropriate
boundary conditions. Therefore, to secure the minimizing M * in (LlI), it
suffices to exhibit a monospline of degree n satisfying the relevant boundary
conditions, and (1.12).

The previous analysis provides the proof of the following elementary
variational theorem.

THEOREM 1.2. Suppose there exists a quadrature formula of the desired
kind satisfying (1.7). The monospline M *(x) corresponding to the best qua
drature formula is uniquely determined by the prescription that Mix) fulfills
certain boundary conditions and satisfies the orthogonality relations (1.12)
with respect to all splines displaying the same knots and satisfying the same
boundary conditions.

The description of the best M *(x) given in Theorem 1.2 is not of practical
utility.
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More practically, the best M *(x) can be obtained by solving an appropriate
linear system of equations. In all the examples of Section 2-5, M *(x) is
effectively evaluated from the solution of a simple interpolation problem.
Specifically, M *(x) is determined to satisfy the boundary conditions (those
generating the desired kind of quadrature formulas), additional "adjoint"
boundary constraints (see Section 4), and "interpolation" conditions.
The total number of conditions equals the number of parameters for the
monospline.

THEOREM 1.3. The collection of admissible quadrature formulas rc is
nonvoid if and only if the determinant of the linear equations characterizing
the best monospline is nonzero.

Proof When rc is nonvoid, it was pointed out, the best quadrature
formula can also be characterized in terms of a best approximation problem
in L 2 [0, 1]. Since L 2 is strictly convex, the solution M * is unique. As indicated
just prior to this theorem the best monospline can be discerned from the
solution of a system of linear equations. The associated homogeneous
system ofequations yields all spline functions fulfilling the same homogeneous
boundary and "interpolation" conditions. If this system possesses a nontrivial
solution (i.e., if the determinant of the linear system is zero), we obtain a
nontrivial spline S satisfying the same boundary conditions and the orthog
onality property (1.12). It follows that Sis orthogonal to itself and therefore
S = 0, a centradiction. Conversely, if the determinant is nonzero, then we
can construct an admissible monospline by solving an appropriate interpo
lation problem, and rc is nonvoid. This completes the proof of Theorem 1.3.

In the following sections, several important concrete examples of the best
quadrature formulas and their complete characterizations will be elaborated.

2. SOME IMPORTANT CLASSES OF QUADRATURE FORMULAS

For the explicit characterization of the monospline generating the best
quadrature formula in the sense of Sard, with L(f) = f~f(x) dx, it is useful
to write every admissible monospline of degree n as the nth derivative of a
monospline of degree 2n, N<n)(x) = M(x) where now

(2.1)

This amounts merely to a change of notation in (1.9) and will prove most
convenient in discerning the properties of the "best" monospline associated
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with a given type quadrature formula. (Notice that N(x) has 2n + r param
eters which is the size of the linear system alluded to prior to Theorem 1.3).

In the new notation, the relation (1.3) reads as

L(f) = f: f(x) dx = Q(f) + R(f) (2.2)

for allf of continuity class Cn[O, 1], where Q(f) has the representation (1.5)
as earlier but the coefficients are expressed as

A j = (-I)i+1 N(2n-H)(0),

B j = (-I)i N<2n-i-1 )(1), j = 0, 1,2,..., n - 1,
(2.3)

f-t = 1,2,..., r, (2.4)

and the remainder functional takes the form

(2.5)

The variational argument described in connection with Theorem 1.2
shows that the quadrature formula best in the sense of Sard is induced by
that monospline N *(x) of degree 2n with knots {gvK satisfying

rN~n)(x) s<n)(x) dx = 0
o

(2.6)

for all splines S(x) of degree 2n - 1 with knots {gvK ; both N *(x) and S(x)
will be required to satisfy certain boundary conditions in order that the
quadrature formula be of the requisite form.

EXAMPLE 1. Consider quadrature formulas of the type

r

Q(f) = L cJ(gv).
v=l

(2.7)

Comparing with (1.3) and taking cognizance of (2.3), we infer that the
corresponding class of monosplines of degree 2n must satisfy

N<n)(o) = Nln+ll(O) = = N<2n-l)(0) = 0,

N<nl(l) = N(n+l)(I) = = N(2n-ll(1) = O.
(2.8)
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A simple analysis reveals that quadrature formulas of the kind (2.7) exist
satisfying the requirement R(f) = 0 for f a polynomial of degree ::;;'n - 1 if

r? n. (2.9)

Assume condition (2.9) holds. Let Sex) be an arbitrary spline of degree
2n - 1 with knots {tvK which also satisfies the boundary conditions (2.8).

The collection

~ = {N(x) = N(x) + Sex)}, (2.10)

where N(x) is a fixed monospline and Sex) an arbitrary spline of the proper
degree fulfilling the boundary constraints (2.8), spans the set of all admissible
monosplines inducing quadrature formulas of type (2.7). The set of all Sex)
as described above is denoted by

'6' = {Sex)}.

The variational principle affirms that Nix) minimizing f~ I N<nl(x)1 2 dx
for N traversing ~ is uniquely determined by the properties

N * satisfies (2.8)

and the orthogonality condition

(2.11)

rN~nl(x) s<nl(x) dx = 0
o

We claim that N*(x) satisfies

for all S E '6'. (2.12)

and the further interpolation conditions

(2.13)

(2.14)

The interpolation Theorem 2 of Karlin [4] tells us that N *(x) is uniquely
determined by these stipulations. A formal proof that N *(x) satisfying(2.13)
and (2.14) implies the validity of (2.12) runs as follows:
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Applying the identity (1.3) withf(x) = N *(x), referring to (1.6), and with
S(x) playing the role of N(x), we infer the relation

1 n-l

(_l)n I s(n)(x) N~n)(x) dx = L (_I)i+1 SI2'H-ll(l) N~)(I)
o j~O

n-l r

+ L (-I)i S(2n-j-l)(O) N~l(O) + L avN*(gv)'
j~O v=1

(2.14a)

Since S(x) satisfies the boundary constraints (2.13), and N*(x) the interpo
latory conditions (2.14), we find that all terms on the right in (2.14a) vanish.
Thus, (2.12) prevails for all S E ~, as is desired to be shown.

EXAMPLE 2. Consider quadrature formulas of the type

r n-p n-q

Q(f) = L Cd(gk) + L A,J(i,/)(O) + L BJ{jv\I),
k=1 ~~1 v=1

where {i,':}f-P and {jv'}~-q are prescribed such that

p, q ~ n, (2.15)

(if p = n (q = n), then the second (third) sum is missing). We wish to deter
mine that quadrature formula of the form (2.15) which is the best in the
sense of Sardo Consulting (1.3) in conjunction with Theorem 1.1, we infer
that the corresponding monosplines (of degree 2n) must satisfy the boundary
conditions

where

Nlkl)(O) = N(k2l(0) = = N(kpl(O) = 0,

NUll(l) = N ll2)(l) = = NUq)(l) = 0,
(2.16)

k~ = 2n - 1 - i~ ,

Iv = 2n - 1 - jv ,

I-t = I,2, ,p,

v = 1,2, , q,
(2.17)

and {j~}l and {ivH' are the sets complementary to {j~'}f-q and {iv'}f-P,
respectively, in {O, 1,... , n - I}. Note that

n ~ k 1 < k 2 < < k p ~ 2n - 1,

n ~ II < 12 < < Iq ~ 2n - 1.
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Examination of the integration by parts formula (consult also (2.I4a))
suggests that the optimal N*(x) should satisfy the "adjoint boundary con
ditions"

v = 1,2,... , n - p,

and the interpolatory conditions

N*(gp) = 0,

Il- = 1,2,... , n - q,

p = I,2, ... ,r.

(2.18)

(2.19)

(2.20)

The existence of a monospline obeying the constraints (2.16) and fulfilling
the additional conditions (2.18) and (2.19) is not guaranteed. A necessary
and sufficient conditions for the existence of a unique monospline satisfying
(2.16)-(2.19) is (the Fredholm determinant involved is that based on the
kernel K(z, w) of Karlin [4]; notation is that of [3]; see also (2.17)):

K (
gl ,... , gr ,il',···,i~-q, 11 ,..• , Iq ) 0
. . k' k' t. t. > ,
11"··' I p , 1 , ... , n-p, Sl '.'0' Sr

where {kv'}~-P is the set complimentary to {kv}i from {n, n + I, ... , 2n - I}.
The precise requirements on the indices,j"s, /'s, i's and k"s for which (2.20)
is positive are recorded in Theorem I of Karlin [4]. In particular, if r ~ n,
then (2.20) always prevails. When p :S;; r < n, then (2.20) holds if and only
if k~+r_p ~ iv', v = 1,2,... , n - r. Analogous requirements apply in the other
cases.

It is worth emphasizing that the existence of a monospline satisfying (2.16)
(2.19) is equivalent to the existence of a quadrature formula of the type (2.15)
for which (0.1) holds (see Theorem 1.3).

The verification that N * fulfilling (2.16)-(2.19) also inherits the orthog
onality property

with respect to all splines Sex) satisfying the constraints (2.16) is accom
plished as in Example I mutatis mutandis.

3. BEST QUADRATURE FORMULAS WITH GENERAL BOUNDARY CONDITIONS

Consider quadrature formulas of the form
p q r

Q(f) = I aiUi(f) + I bYi(f) + I Ck!(gk), (3.1)
i-I i=1 k=1
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n
Ui(f) = L Aid(j-l)(O),

j~1

n

Vi(f) = L Bid(j-l)(I),
j~1

i = 1,2, ... ,p,

i = 1,2,... , q.

(3.2)

(3.3)

We assume that the Aij and Bij are real, that 0 :(; p, q :(; n, and that

rank II Aij II = p; rank II Bij II = q. (3.4)

By adding further relations to those of (3.2) and (3.3) totalling n for each
boundary point, we can, in a standard way, construct adjoint boundary
linear forms (see Neumark [6, Chap. I]). Specifically, first expand the matrix
A to an n X n nonsingular matrix A. This is feasible by virtue of the rank
stipulations (3.4). Let A = A-I = II aij Ilf. Then the vector relation

](0) = Aii(f)

obtains, where ii(f) and J(O) denote, respectively, the vectors

(3.5)

ii(f) = (U1(f), U2(f), ... , Uif), ](0) = (f(0),j(I)(0),j(2l(0), ... ,j(n-ll(0».

Substituting from (3.5) into the boundary terms of the integration by parts
formula (1.3), we get

n n n
L (-I)i M(n-i)(O)j(i-l)(O) = L (-I)i M(n-i)(O) L aiPlf)
i~1 i-I j~1

n

= L Ulf) aiM) = B(f, M), (3.6)
j=1

where

n

OJ(M) = L (_l)n+l-i an+1_i,jM(i-l)(0), j = 1,2,... , n.
i~1

Adjoint boundary conditions to

Ui(f) = 0,

at the endpoint 0 are taken to be

i = I, 2, ...,p, (3.7)

0lf) = 0, j = p + I,p + 2,... , n. (3.8)
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The justification of the definition in (3.8) rests on the property that B(f, M)
is a bilinear form in the vector variables J and M which vanishes when f
satisfies the boundary conditions (3.7) and M satisfies the adjoint boundary
conditions (3.8).

The n - p X n matrix associated with the adjoint boundary forms is

(3.9)

Since A = A-I is nonsingular, it is easily verified that the matrix (3.9) has
full rank (i.e., rank n - p).

A similar procedure can be implemented with regard to the boundary
point x = 1. Thus, extend the matrix B to an n X n nonsingu1ar matrix
13 and let E = B-1. A set of adjoint boundary forms at the endpoint 1 are
then cast explicitly as

so that

n
V.(M) = " (_l)n-i b . ·Mti-ll(l)J 1... n+l-',J ,

i~l

j = 1,2,... , n, (3.10)

n n

L (-1)1+1 Mln-il(1)flj-l)(1) = L V;(!) Vi(M)
j~l i~l

and the adjoint boundary conditions to

(3.11)

Vi(f) = 0,

at x = 1 are then defined to be

i = 1,2,... , q, (3.12)

V;(!) = 0,

It follows as before that

i = q + 1, q + 2, ... , n. (3.13)

Remark. The above construction of adjoint boundary forms is indepen
dent of the determination of the specific expanded matrices A and 13 in the
sense that any two sets of adjoint boundary conditions are connected by a
nonsingu1ar linear transformation and, in particular, total the same number
of conditions and define the same linear subspaces (see Neumark [6]).
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Let M(x) be a monospline of degree n with knots {g,J~ . In view of (3.6)
and (3.10), the integration by parts identity (1.3) can be written equivalently as

rj(x) dx = f U;(f) O;(M) + f vi(f) ViM) + ±Cd(gk)
o i~1 i~1 k~1

+ (_l)n ( M(x)fln)(X) dx (3.14)

valid for f of continuity class Clnl[O, I].
Comparing (3.1) with (3.14) and reasoning as in Theorem 1.1, we establish

a 1 : I correspondence between the collection of quadrature formulas of
type (3.1) satisfying f~j(x) dx = Q(f) for all polynomials of degree at most
n - 1 and the set of all monosplines M(x) of degree n with knots {g"K
fulfilling the boundary constraints

OlM) = 0,
ViM) = 0,

i = p + I, p + 2, , n,
i = q + I, q + 2, , n.

(3.15)

We designate this class of monosplines as An.rC{g,,}; fIl).
Sufficient conditions to assure that the collection An,r({g,,}; fIl) is nonvoid

are indicated later in Theorem 3.2.
In characterizing the quadrature formula of type (3.1) best in the sense

of Sard it is convenient to change notation by expressing the general mono
spline M(x) in An.r({g,,}; fIl) as the nth derivative of a monospline N(x) of
degree 2n, M(x) = Nlnl(x) (as previously, cf. Section 2). The formulas
are altered as follows: (3.14) becomes

rj(x) dx = f Ui(f) Oi(N) + f Vi(f) ViN)
o i~ i~

+ ±Cd(gk) + (_l)n rN<n)(X)jlnl(X) dx, (3.16)
k~1 0

where, with A-I = A = II iii,; 11;, B-1 = lJ = II bij II; ,

n
O(N) = '\' (_I)n+i-l ii . ·N<n+i-l)(O):; ~ n+l-1.J ,

i~1

n

V.(N) = '\' (_l)n+i b . ·N<n+i-l)(I)
J k.. n+l-'l,3 ,

i~1

j = 1,2,... , n,

j = 1,2,... , n,

(3.17)

and the boundary forms Ui and Vi remain as defined in (3.2) and (3.3)
(the Ck are defined in 2.4).
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Substituting N(x), a monospline of degree 2n, for j(x), and S(x), a spline
of degree 2n - 1 with knots {gkK, (3.16) reduces to (compare to (1.6))

1 "J N(nl(x) s(nl(x) dx = (_1)n+1 L UiN) GiS)
o j~l

n r

+ (_1)n+1 L ViN) ViS) + (_1)n+1 I CkN(gk)'
j~l k~l

(3.18)

Inspection of (3.18) implies the following theorem:

THEOREM 3.1. Suppose there exists a monospline N(x) of degree 2n with
knots {gkK satisfying the adjoint boundary constraints

Gi(N) = 0,

Vi(N) = 0,

i = P + 1, , n,

i = q + 1, , n.
(3.19)

(Recall that this class of monosplines is designated as .A'2n,r({g,,}; 86).)
Suppose there exists a monospline N *(x) in .A'2n,r({g,,}; 86) satisfying the
additional boundary conditions

Ui(N*) = 0,

Vi(N*) = 0,

and the interpolation requirements

i = 1,2, ,p,

i = 1,2, , q,

k = 1,2,..., r,

(3.20)

(3.21)

then this monospline is best, in the sense of Sard, for the linear functional
L(f) = f~j(x) dx among all quadrature formulas of the type (3.1) induced by
monosplines of class .A'2n,r({g,,}; [14).

The conditions (3.19)-(3.21) are equivalent to the orthogonality property

valid for all splines S(x) of degree 2n - 1 with knots {gkK satisfying the
adjoint boundary conditions (3.19).

Appealing to the general interpolation Theorem 2 of Karlin [4], we deduce
in Theorem 3.2 below a sufficient condition for the existence of a monospline
satisfying (3.19)-(3.21). This monospline is best in the sense of Sardo
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THEOREM 3.2. Let C = II Ci; 11;~I.;:1 be the matrix of the boundary forms
{Ui}i and {Vi}~+1' and D = II di; 11;~L;:1 the matrix of the boundary forms
{Vi}f and {P"i}~+1 . Suppose C = II(-1)i Ci; II is sign consistent oforder n (cf. [3]),
i.e., all non zero n-th order subdeterminants of C have a fixed sign and rank
(C) = n. Assume also that D is sign consistent of order n and rank D = n.
Then there exists a unique monospline N *(x) of degree 2n with knots {6cK
satisfying (3.19)-(3.21).

Remark. Checking the sign consistency requirements on the matrices C
and D (defined in Theorem 3.2) is facilitated with the help of the following
facts. Note that the matrix C of the boundary forms {Ui } and {Vi} has the
structure

C = Ii II Ai; Ilf~L~~1 Opxn I.
0n-pxn II(-1 t+1-; an+1-;.i 11;~P+L~~1

(3.22)

By hypothesis, rank (II Aij II) = p. We pointed out earlier, following (3.9),
that the lower right matrix has rank n - p. Therefore, C has rank n. From
the definition, we have

C = III Aij(-1)i Ilf=L;:'1 Opxn

0n-pxn II(-1) an+1-;.i 1I;~p+1.~~1

(3.23)

It is easy to see that the only nonzero subdeterminants of C of order n are
those with their first p columns selected from the first n columns of (3.23)
and their last n - p columns chosen from the last n columns. It follows that

if and only if

C is sign consistent of order n (SCn) (3.24)

(3.25a)

(3.25b)

In a similar manner we find that the matrix D associated with the boundary
forms {Vi} and {P"i} at the endpoint 1 is SCn iff

(3.26a)

(3.26b)

(recall that II Bi; II is the matrix of the boundary forms {Vi}f and lJ-l = Ilbij II;)·
In the next section a class of important examples of certain boundary forms

fulfilling the requirements of Theorems 3.1 and 3.2 is set forth.
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An important example for Theorems 3.1 and 3.2 arises from the boundary
forms

U;(f) = jli-l)(O) + (_I)n+P+i-1 cd1n-i)(O),

V;(f) = jli-1)(1) + (_I)Hi dd 1n- i )(1),

i=I,2, ,p, (4.la)

i = 1,2, , q, (4.lb)

where 0 :S p, q :S n, n is an even integer and the Ci and di are strictly positive.
Boundary conditions of the kind (4.1) occur in physical problems associated
with vibrating segments; see Karlin [3, Chap. 10, §7].

The p X n matrix for the boundary forms {Ui}i has the representation
(when p :S n - p)

l 0

A '" 0 l 0

0 .. , a l 0 '" a

o

c (_l)n+2P-l
p a

o

a

(4.2a)

with I's running down the main diagonal and

occurring on the skew diagonal. When p > n - p the skew and main
diagonals intertwine with no ambiguity present since n is even,2 and then
the boundary forms (4.1a) generate the matrix

l a a C (_l)n+p
l

A =

a l a a

a ... a C (_l)n+2p -l 0 ... 0 1
P

It is a simple matter to check that A has rank p.

o ...

2 The subsequent analysis could be carried out with n odd involving unessential technical
modifications.
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In line with the procedure outlined in Section 3, we expand the matrix A
to an n X n matrix .A of full rank. Indeed, for the case at hand, A is chosen
to be of the same form as A. Specifically, we take

1 0 ... 0 0 c (_l)n+p
1

0 1 0 ... 0 c (_l)n+p+l 02

A~ (4.3)

0 (_1)2n+p -2 0 '" 0 1 0

(_1)2n+p -1 0 0 '" 0 0 1

where A has 1's on the main diagonal, the entries

running down the skew diagonal and 0 terms elsewhere.
It will become evident that the Ci play no role in the reasoning so long as

they are strictly positive. Henceforth, whenever convenient we set Ci = 1 for
all i, and similarly for di .

The properties of the matrices A and A = A-I to be established are listed
below.

PROPOSITION 4.1. The matrix A in (4.3) has a strictly positive determinant.

PROPOSITION 4.2. The matrix A = A-I = II iii.i Ilf has the identical form
as in (4.3), except for multiplication of each nonzero element by a positive
factor and replacing p by p + 1 (i.e., changing the sign of each element on
the skew diagonal).

The next assertions subsume the essential facts needed for the applicability
of Theorem 3.2. We describe it in the case where 2p ~ n.

PROPOSITION 4.3. The matrix

-1

o

o

o

1 0

o ... 0

o (-1)PC
1

o (~1)Pc2 0

(-l)P c 0'" 0
p

(4.1-1- )

is sign consistent of order p (SCi») and

(4.5)
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The corresponding propositions for the matrices associated with the
boundary forms (4.1b) will be recorded later.

It may be helpful to illustrate these propositions. Let n = 4, p = 2. Then

I
1 0 0 1

A = II~
0 0

~ II, A=I
0 1 -1 0

1 -1 0 1 1 0
-1 0 0 1

1 0 o -1

Al = II-~
0 0

~II, A = A-I = a
0 1 1 0

1 1 o -1 1 o '
1 0 0 1

where a is a positive factor. Clearly Al is SC2 • Observe finally that the
requirement of (4.5) is satisfied, i.e.,

~ II is SC2 •

We turn to the proofs. Recall that n is even.

Proof of Proposition 4.1. We use induction on n. The assertion is correct
for n = 2. Assume its validity for n - 2. Expand Aby the first row to obtain

det A = Dl + (_l)n+l ( _1)n+pcl D2 ,

where Dl is the n - 1 x n - 1 minor of the element in the first row, first
column, and D2 is the n - 1 x n - 1 minor of the element in the first row,
last column. Expand D l by the last row to get an n - 2 x n - 2 determinant
of the original form. Hence Dl is strictly positive by virtue of the induction
hypothesis. Expanding D2 by the last row, we get an n - 2 x n - 2 deter
minant of the original form multiplied by the factor (_1)n( _1)2n+p-l.

Combining, we have det A = (Xl + (-1)n(X2 where al and (X2 are strictly
positive. Since n is even, det A > 0 as claimed. II

Proof of Proposition 4.2. There are three steps to the calculations.

(i) The minor of any element on the main diagonal of A is strictly
positive. The evaluation is analogous to that of the previous proposition.
Specifically, we employ induction on n and expand the determinants twice
appropriately by rows and columns to achieve the desired result.

(ii) The minor of the element on the skew diagonal in row k has strict
sign (-1 )n+p-k and the cofactor of this element has strict sign

(-1 )k+n+l-k . ( -1 )n+p-k = (-1 )P+k+l.

The proof is the same as in (i).
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(iii) The minors corresponding to the elements not located on the main
or skew diagonal are zero. Consider the minor for row k, column l, 1 oF k,
1 oF n + 1 - k. Then all elements in rows I and n - 1 are zero except for
the entries in column n - l. Hence these rows are linearly dependent and the
minor is zero. Therefore A-I has the form as claimed.

Proof of Proposition 4.3 (the assertion of (4.4)). First, assume p :( nf2.
Any p X P submatrix r of Al will obviously have determinant zero unless
the column indices of r consist of exactly one index from each of the pairs
(1, n), (2, n - 1),... , (p, n + 1 - p). We evaluate this determinant by
expanding by rows 1, 2, ...,p successively. After v - 1 reductions of order, the
resulting element in row 1, column 1is (-1)v and in row 1, column p + 1 - v,

of sign (-I)P+l-v. Either contributes a nonzero factor of sign (-I)v when
we expand by this row. Hence, any p X P submatrix, p :( nf2, has a deter
minant of sign (-1 )P(P+ll/2.

If P > nf2, so that p - 1 > n - p, (since n is even) the matrix Al now
has the form

-1 0 0 (-1)Pc
1

0 1 0 0 (-l)P c
2 0

0 0 ( _1)n/2 (-l l Cn/ 2 0 0
(1,.6)

Al ~

0 0 . (-1l"Cn/ 2+l (_1)n/2+l 0 0

o ... 0 ( -l)Pc 0 0 (-1)" o ... 0P

The element (-I)Pcp appears in column n + 1 - p, and the element (-I)P
in column p. Let r be a p X P submatrix of Al . Suppose the columns of
index v and n + 1 - vare omitted for some v = 1,2,... , n - p, in forming r.
Then, clearly, the matrix r displays only zeros in row v and consequently
has determinant zero. If neither column v nor column n + 1 - v is deleted
in constructing r for some v = 1,2,... , n - p, then these columns are
proportional (in fact, all elements except those in row v are zero) and there
fore, again, det r = O. Thus, the only p X P submatrices of Al with possibly
nonzero determinant are obtained by extracting exactly one column from
each of the pairs (1, n), (2, n - 1),... , (n - p,p + 1). Since this accounts for
n - p deletions, the resulting matrix will be of order p X p. To evaluate this
determinant we expand successively by rows 1,2,... , n - p. As in the case
p :( nf2, the vth row contributes a nonzero factor with sign (-I)v. Denote
the remaining 2p - n X 2p - n determinant by det C (C consists of rows
and columns of indices p + 2, p + 3,... , n + 1 - P of AI)' After reversing
the order of the columns and multiplying the matrix by (-I)P, we get a
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matrix of the form dealt with in Proposition 4.1 and which, hence, has a
nonzero determinant of fixed sign. Therefore, the assertion pertaining to (4.1)
is established when p > n12.

The validation of assertion (4.5) is accomplished by the same types of
arguments. II

We summarize briefly the pertinent facts concerning the boundary forms
(4.1 b) at the endpoint x = 1. The matrix for these boundary conditions is

B

1 0

o 1 o o

o (-1) '1+1"
1

o
(4.7)

o ... 0 1 0'" 0 (_1)2'1cJ
'1

o . . . 0

with I's placed on the main diagonal and the entries (-I)H1d1 , (-I)H2d2 , ... ,

(-1)2qdq running down the skew diagonal. We extend B to the n x n matrix

1 0 C (_l)'1+lci
1

0 1 ( -1)CJ+2
dZ 0

B= (4.8)

0 ( _l)Cl+n-l 1 0

( _l)'1+n 0 0 1

with 1's on the main diagonal and the elements of the skew diagonal
consisting of

from top to bottom.
It is established as before that B = B-1 has the same form as B (apart

from positive factors) except that q + 1 is substituted for q throughout.
Finally, the analog of Proposition 4.3 reads as

PROPOSITION 4.4. The matrix B is Seq and the matrix

where B = B-1.
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Propositions 4.1-4.4 in conjunction show that the hypotheses of Theorems
3.1 and 3.2 are satisfied for the boundary forms (4.1). Invoking the con
clusions of these theorems for the case at hand produces

THEOREM 4.1. Consider quadrature formulas of the type (3.1) with the
boundary forms (4.1). Let {Ui}~ and {Vi}; be the extended forms associated
with the matrices A and B defined explicitly in (4.3) and (4.8), respectively.
Determine the adjoint boundary forms {Oi}; and {P"i}; as in (3.8) and (3.13),
respectively. The quadrature formula of type (3.1) best in the sense of Sard
is induced by that monospline N *(x) satisfying the boundary conditions

Ui(N*) = 0,
Vi(N*) = 0,

the adjoint boundary conditions

Oi(N*) = 0,
fJlN*) = 0,

and the interpolation requirements

i = 1,2, ,p,
i = 1,2, , q,

i = P + 1, , n,
i = q + 1, , n,

k = 1,2,... , r.

(4.9)

(4.10)

(4.11)

A quadrature formula of type (3.1) with boundary form (4.1) exists if and only
if the determinant of the system (4.9)-(4.11) is nonzero. For p = q = n12,
N * always exists.

The proof of the last assertion amounts to checking that the conditions
of Theorem 3.2 are indeed satisfied.

5. BEST QUADRATURE FORMULAS FOR PERIODIC BOUNDARY CONDITIONS

Let f!JJ denote the collection of all functions of class cn-I[O, 1] such that
fCn-I) is absolutely continuous, j<nl E L2(0, 1). The space f!JJ is endowed
with the seminorm

Ilflln = [J~ [j<n)(x)]2 dx]I/2 (5.1)

The family of quadrature functionals f2 is specified to be all linear func
tionals of the form

r n-l

QcU) = L Ck!(gk) + L ci[f(i)(I) - f(i)(O)], (5.2)
k~l i=O
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where {gkK are fixed and the subscript c indicates the dependence on the
coefficient array {ci , ... , cr} and {co, ci , ..• , cn- I }. The functional to be
approximated is, as usual, L(f) = f~f(x) dx and Rc(f) = L(f) - Qc(f)
denotes the remainder functional. We further restrict !l so that Rc(f) = 0
for all polynomials f of degree ~n - 1.

Our objective is to determine c* or, equivalently, Qc.(f) so that

inf sup I Rc(f)[ = II Rc' II·
C fE~

Ilfll,,~I

(5.3)

We stress for the case at hand that the norm II Rc II is evaluated with respect
to functions in ~.

Each monospline N(x) ofdegree 2n with knots {gkK satisfying the periodicity
conditions

N(2n-i-ll(O) = N(2n-i-I)(l), i = 0, 1,... , n - 1, (5.4)

generates a quadrature formula of type (5.2) such that, for any f, executing a
suitable integration by parts and taking account of (5.4), there results the
formula

1 r n-II f(x) dx = L Cd(gk) + L Ci[f(i)(O) - f(i)(I)]
o k~ ~o

+ (-I)n I: N(nl(x)f(nl(x) dx, (5.5)

and we may then identify

Rc(f) = (_1)n I: N(n)(x) f(n)(x) dx.

The converse is also true. Every quadrature formula of the desired kind is
induced by a monospline N(x) of degree 2n satisfying (5.4). The proof of this
fact paraphrases the analysis of Theorem 1.1.

The characterization of the best quadrature formula for the class ~
•becomes

THEOREM 5.1. The best quadratureformula in the sense of(5.3) corresponds
to that monospline Nix) of degree 2n with knots {gk}I , r ~ 1, fulfilling (5.4)
and satisfying the orthogonality relation

I: N~nl(x) s<nl(x) dx = 0 (5.6)
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with respect to all splines Sex) of degree 2n - 1 which satisfy (5.4) with the
same knots.

An equivalent characterization is that N*(x) is uniquely determined as the
monospline ofdegree 2n satisfying the periodicity requirements

and the interpolation conditions

j = 0, 1,... , 2n - 1,

k = 1,2,... , r.

(5.7)

(5.8)

It is essential in Theorem 5.1 that r ~ 1 (the number of prescribed knots
exceed, or equals 1).

Another version of a periodic best quadrature formula can be based on
trigonometric type functions, and the interpolation theorem in Karlin and
Lee [5] is relevant.

6. EXTENSIONS AND REMARKS

6.1. Best L 2 Approximations

The results of Theorems 4.1 and 5.1 can be interpreted as a characterization
of best approximation in the L n

2 norm to the zero function by monosplines
satisfying appropriate boundary conditions with prescribed knots.

6.2. General Weight Functions

The analogous problems of determining best quadrature formulas associat
ed with linear functionals L(I) = f~f(x) w(x) dx, where w(x) is a positive
continuous weight function, admit the following solution: Merely replace
the term x 2n j(2n)! in the definition of a monospline by the (2n - I)-fold
integral

The correspondence between these generalized monosplines and quadrature.
formulas results as previously. The characterization of best quadrature is
in terms of that monospline satisfying certain boundary conditions as well
as vanishing at the knots.

6.3. Tchebycheffian Quadrature Formulas

The results summarized in this paper extend to the corresponding case of
Tchebycheffian splines (for relevant definitions, see Karlin [3, Chap. 10]).
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6.4. Multi-knot Quadrature Formulas.

A parallel analysis to that of the preceding sections enables us to charac
terize quadrature formulas best for Lf = f~f(x) dx in the sense of Sard
among all quadrature formulas of the form

n n r /l.k

Q(f) = L Bd1j-l)(1) + L Ad<i-ll(O) + L L Ckr,!IP-ll(gk) (6.1)
j~l j=l k=l p~l

which are exact for any polynomial of degree at most n - 1. Here we
require that

I ~ fLk ~ n. (6.2)

The correspondence between quadrature formulas of the form (6.1), exact
for polynomials of degree at most n - I, and monosplines of degree n with
multiple knots of the form

x n
M(x) = .. + Sn-l(X), (6.3)n.

where
r IJ,k

Sn_l(X) = L L akp(x - gk)~-P + p(x)
k~l p~l

(6.4)

(6.8)

and p(x) is a polynomial of degree at most n - I, is described by the relations

Bj = (-I)H M<n-i)(I), j = 1,2,... , n, (6.5)

Ai = (-I)i Mln-il(O), j = 1,2,... , n, (6.6)

Ckp = (-l)p-l[M<n-p)(gk-) - M<n-p)(gk+)], p = I, 2, ... ,fLk' (6.7)

and remainder given by

R(f) = (_l)n ( M(x) pn)(x) dx.

In order to discern the quadrature formula of the form (6.1) best in the sense
of Sard, it is convenient to replace the monospline appearing in (6.3)-(6.7)
by N<n)(x) = M(x), where N(x) is a monospline of degree 2n with knots
of multiplicity fLk at gk , k = 1, 2,... , r.

With this modification and letting Sex) denote an arbitrary spline of degree
2n - I with the same knots and multiplicities as N(x), an integration by
parts yields

(_l)n rNln)(x) s<n)(x)dx = f (-I)k Sl2n-k)(x) Nlk-l)(X) I~=o
o k~l

r IJ"

+ L L (-l)P SI2n-p)(x) I~~E'+ NIP-l)(g!).

!~l p=l (6.9)
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(Since N(x) is a monospline of degree 2n, and iLl :(; n according to (6.2),
the term N(P-l)(gl) in (6.9) is well-defined.) The usual variational argument
implies that the best quadrature formula corresponds to that monospline
N *(x) which satisfies the orthogonality property

(6.10)

for any spline S(x) of the requisite form.
The precise boundary conditions to be imposed on N *(x) will depend

upon the type of the quadrature formula desired. For example, if we consider
formulas of the kind

r "k

Q(f) = L L ak1J<P-l)(gk),
k~l p~l

(6.11)

then comparing (6.1) with (6.11) and referring to (6.5) and (6.6) compel that

j = 0, I, ... , n - I, (6.12)

and then the orthogonality property (6.10) is satisfied for all splines of
degree 2n - 1 satisfying the boundary conditions (6.12) if and only if

1= 1,2'00" r; p = 1,2,... , iLl . (6.13)

Conditions for the existence of a monospline satisfying (6.12) and (6.13)
is subsumed in the content of the interpolation Theorem 2 of Karlin [4].

7. GENERAL CONCEPTS AND PROSPECTS OF BEST QUADRATURE FORMULAS

It is useful and instructive to develop an abstract setting for the concept
of best quadrature formula. Let L be a continuous linear functional with
domain !Jl, a linear topological space, and let II . [I be a norm or seminorm
on !Jl.

A collection f2 of continuous linear functionals on !Jl is specified and a
member Q E f2 is called a quadrature formula. f2 could be but is not neces
sarily a linear space or a convex set. To each Q E f2 is associated a remainder
functional

Rof= Lf- Qf (7.1)
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A best quadrature formula is any member Q* of f2 satisfying
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inf sup II Rofll = sup II Ro*fll = inf II R o II R o* II, (7.2)
OE.2 11/11,,;;1 111I1,,;;1 OE.2

IE~ IE~

where the norm II Ro II is the conjugate norm with resepct to II . II (the given
norm or seminorm).

We list a variety of examples.

I. Define

:16 = {f;fE Cn- 1[0, 1],pn-1) absolutely continuous andf<nl E L 2[0, I]} (7.3)

with the seminorm

II . II = Ilflln = ~( [pnl(x)]2 dx.

(7.4)

Observe that (7.2) is infinite unless there exist a Q E f2 for which RQ(f) = 0
for all polynomials of degree ~n - 1. In fact, suppose f is a polynomial of
degree ~n - 1. Then

and

IIA/II = 0 for all ,\ =1= 0

So

I RQ(V)I = I ,\ I I RQ(f)I.

sup I Ro(g) I = 00,
IIgll";;l

The above analysis shows that we can trim f2 to include only those Q
satisfying

Q(f) = 0 for any polynomialf of degree ~n - 1.

It is worth noting that here f2 is a linear space.

(b) The cases of Sections 3-5 furnish other linear spaces of quadrature
formulas for the same normed spaces :16.
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(c) Let

f2 = lQ; Q(f) = tl ad(gi) where {ai} (real) and {giE ,

o < gl < g2 < ... < gr < I are all free variables but r is fixed!.

Note that in this example f2 is not a linear space, nor is it convex, and it is
not even closed. The best quadrature formula in this case, obviously, becomes
the optimal quadrature formula as defined by Schoenberg [13].

For the specification LI = I:f(x) dx, the identification of Ro(f) in (2.5)
shows that

II R Q II = r[N<nl(x)]2 dx,
o

(7.5)

where N is the monospline corresponding to Q. The infimum in (7.5) taken
with respect to f2 is, therefore, equivalent to the best L 2 approximation to
xn/n! by splines satisfying certain boundary conditions.

II. Consider

f!Ij = the class of L 2(D) functions (square integrable overDwith respect to
two-dimensional Lebesgue measure), analytic in a domain D
of the complex plane containing a real segment [a, b].

Let the norm be

11/112 = ffD If(z)1 2 I dz I,

and specify

L(f) = ( w(x) f(x) dx,

where w(x) is a continuous function on [a, b]. Consider

(7.6)

(7.7)

f2 = lQ; Q(f) = tl aJ(gi), where the free parameters are

{giE C D and {ai} (complex), r is fixed!. (7.8)

The space f!Ij has a reproducing kernel K(z, w) on D such that

few) = f K(z, w)f(z) dz,
y

WED,
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where y is a simple closed curve lying in D containing w in its interior. Then

Lf = fr h(z)f(z) dz,

where r is a simple closed curve in D surrounding [a, b] and

h(z) = rw(x) K(z, x) dx.
a

Therefore, if Q E fl, then

II R Q II = Ii h(z) - ±aiK(z, gi) II '
i~1 L 2 (D)

and the problem of finding a best quadrature formula for the linear functional
(7.7) reduces to a best approximation problem in V(D).

Quite generally, let the linear functional L have the representor L in the
conjugate space, so that Lf = (L,j) for allfE Pi. Then the problem of finding
the optimal quadrature formula, as described above, can be reduced to that
of finding the best approximation to the representor L in the conjugate space
by a representor of a functional in fl; viz. that of solving

i~fll L - QII,

where the norm is the conjugate norm, and Q ranges over all representors
of functionals in fl.

Some aspects of the quadrature formulas occurring in the examples of this
section were investigated by several authors: see Davis [1], Eckhardt [2],
Richter [7], and references therein.

III. Let K(t, s) be a kernel continuous in the L 2(da(s)) norm with respect
to parameter t, defined on TxT where T = (-00, (0). Suppose

G(r, t) = fT K(r, s) K(t, s) da(s), (7.9)

where a is a sigma finite measure on T. Note that G(t, r) = G(r, t). It is easy
to see that G is positive definite; in fact,

t etietjG(ti , tj) = f If etiK(ti , s) 12 da(s) ;): 0,
i.j=1 T i~1

for all real eti and finite selections {ti } from T. Assume that

h K(t, s)f(s)da(s) == ° with/suitably continuous implies f= ° (7.9a)
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Let !JH1 be the set of all functions j(t) of the form

m

I(t) = L cxiG(Ti,t),
i~l

CXi , T i real; m finite, (7.10)

endowed with the inner product (for get) = L f3jG(Sj , t))

which is well-defined and independent of the representations of I and g.
Then G(t, T) E!JH1 for fixed t, and it is easy to see that <G(s, ·)JO> = I(s);
hence G is a reproducing kernel for ~l •

Consider the mapping V : ~l -+ fJl1 , where I in (7.10) is assigned the image

r

jet) = L cxiK(Ti , t)
i~l

and fJl1 comprises the set of all such f we find by virtue of (7.9a) that V is
well defined. On fJl1 we prescribe the inner product

(1('), g(.)) = fJet) get) duet).

By virtue of (7.9) it is immediately verified that V determines an isometry
of !JH1 onto fJl1 • Let fJI and ~ be the Hilbert spaces obtained by completing
the appropriate norms in fJl1 and !JH1 , respectively. The mapping V can
obviously be extended to map ~ onto fJI maintaining its isometric character.
Since !JH is a reproducing kernel space, its elements are functions /(t) =
<G(t, ·)JO> and, indeed, continuous functions. Moreover if vi = f then

I(t) = <G(t, ·)Jo> = (K(t, .),j(.))

= fT K(t, T) j(T) du(T). (7.11)

Consider now the problem of determining a best quadrature formula for
the continuous linear functional L(/) = f~j(t) dt on!JH among the quadrature
formulas of the type

r

Q(/) = L ad(ti )·
1

It is convenient to examine the equivalent problem on the isometric space
fJI. The induced functional L(f) = LV-l(f) = Lfin view of (7.11) takes the
form

f:/(t) dt = Lf = Lj(T) dU(T) ( K(t, T) dt, (7.12)
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and, correspondingly,
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Let

Inspection of (7.12) and (7.13) reveals that

I

1 r 1
2

inf II R o II = inf f f K(t, T) dt - L aiK(ti' T) dU(T) , (7.14)
Qe:'). (ai}.{ti}eT 0 i=l

so again the problem of optimal quadrature is one of the best U approxi
mation.

A complete characterization of the solution in (7.14), when the kernel
K(t, T) is appropriately totally positive, will be discussed elsewhere.

The example above and the problem of (7.14) have an interpretation for
regression analysis of statistical time series; see Sacks and Ylvisaker [8-10]
and Wahba [14].
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